
Blockchain Application Development
Using Model-Driven Engineering and

Low-Code Platforms: A Survey

Simon Curty1[0000−0002−2868−9001], Felix Härer1[0000−0002−2768−2342], and
Hans-Georg Fill1[0000−0001−5076−5341]

University of Fribourg, Digitalization and Information Systems Group, Fribourg, CH
firstname.lastname@unifr.ch

https://www.unifr.ch/inf/digits/

Abstract. The creation of blockchain-based software applications re-
quires today considerable technical knowledge, particularly in software
design and programming. This is regarded as a major barrier in adopt-
ing this technology in business and making it accessible to a wider au-
dience. As a solution, no-code and low-code approaches have been pro-
posed that require only little or no programming knowledge for creat-
ing full-fledged software applications. In this paper we review academic
approaches from the discipline of model-driven engineering as well as
industrial no-code and low-code development platforms for blockchains.
We further present a case study for an integrated no-code blockchain en-
vironment for demonstrating the state-of-the-art in this area. Based on
the gained insights we derive requirements for the future development
of no-code and low-code approaches that are dedicated to the field of
blockchains.

Keywords: Blockchain · Low-Code · No-Code · Model-Driven Engi-
neering · Software Development

1 Introduction

With the further maturing of blockchain technologies and the soon expected
transition to more energy-efficient and faster protocols with higher transac-
tion volumes [13,11,24], a more widespread adoption of these technologies seems
within reach. However, one considerable barrier limiting the adoption is the tech-
nical and organizational complexity that users are confronted with when creating
blockchain-based applications [18]. This complexity originates on the one hand
from the underlying technical foundations, which build on distributed and decen-
tralized systems, cryptography, and algorithmic processing [2]. Blockchains such
as Ethereum combine these properties for storing transactions in an append-only
data structure, where each new block has a cryptographically verifiable link to
its predecessor. Thus, users are part of a decentralized network that minimizes
the degree of trust required towards other participants who continuously vali-
date the links of the blockchain. In addition, organizational barriers such as the

ar
X

iv
:2

20
4.

03
38

7v
1 

 [
cs

.S
E

] 
 7

 A
pr

 2
02

2

https://www.unifr.ch/inf/digits/


2 S. Curty et al.

involvement of new regulatory requirements, the development of new skills and
competencies, and the availability of financial and human resources may prevent
adoption in practice [8].
From the perspective of software engineering, the lack of specialists for pro-
gramming may today be partly compensated with so-called low-code platforms
[12,31,4]. These development platforms are typically available as cloud services
with visual, diagrammatic interfaces and declarative languages. In our view, they
constitute the next step in the industry adoption of academic model-driven en-
gineering (MDE) approaches and its predecessors where models are regarded
as primary development artifacts for software engineering [36,5,10]. While low-
code approaches allow a user to produce results without having to understand
source code and there may be an underlying model integrated with features of
the platform [4], the model may not conform to an explicit formalization [10].
Further, we consider so-called no-code approaches as a subset of low-code ap-
proaches that operate at an abstraction level above code, not showing code to
the user at all. Today, a large number of such platforms and tools are available
that either support the development of complete software applications or focus
on providing specific functionality, e.g. for entering data in a form and saving it
to a database [26].
For easing the creation of blockchain-based applications it seems obvious to re-
vert to MDE and low-code approaches. These carry the potential to abstract from
the technical complexity and enable users to focus on usage scenarios and the or-
ganizational embedding. In the following we investigate academic and industrial
approaches for realizing blockchain applications using these methods. We will do
this along the following three research questions. RQ1: Which academic MDE
approaches exist for the development of blockchain-based applications?, RQ2:
Which low-code and no-code platforms permit the realization of blockchain-
based applications?, RQ3: What are requirements for future blockchain devel-
opment platforms that are informed by MDE, no-code and low-code?
In particular, we will regard approaches that are already available for creating
blockchain-based software applications or offer interfaces to other platforms en-
abling this. This will permit to describe the state-of-the-art in this area and
derive requirements for the development of future approaches. The remainder of
the paper is structured as follows. Section 2 will outline related work in the form
of previous studies and lead over to our research methodology in Section 3. Sub-
sequently, we will present in Section 4 our review of academic MDE approaches
and in Section 5 the review of no-code and low-code development platforms
used in industry. Section 6 presents a blockchain use case using state-of-the-art
low-code platforms, resulting in the discussion of requirements in Section 7.

2 Related Studies

Developing blockchain-based applications requires a high level of expertise and
understanding of the underlying technologies. Blockchain-based applications are
empowered by smart contracts, i.e. programs executed on the blockchain. These



Blockchain Application Development 3

smart contracts often involve financial transactions or deal with issues related to
trust. As such, their correctness is of utmost importance. Due to the immutable
nature of blockchains, mistakes in smart contract implementations are difficult to
rectify. This can be eased through different visual languages for smart contracts,
which have been reviewed and compared in [15]. While visual programming lan-
guages aim to reduce complexity and improve accessibility for the programmer,
they do not correspond in general to low-code development approaches, which
may involve visual programming but also deal with the generation and life-cycle
management of software artifacts. Approaches and tools for the analysis and de-
velopment of smart contracts have been reviewed in [19,33]. While both studies
discuss issues related to software engineering, such as code analysis and testing,
model-driven or low-code techniques to develop blockchain-based software are
not regarded.

The study by Ait Hsain et al. [1] focuses on MDE for Ethereum smart con-
tracts, however the review process is not elaborated. Sánchez-Gómez et al. [29]
review model-based testing and development approaches. Since the publication
of their study, newer approaches have emerged. A more recent review of MDE
methods was conducted by Levasseur et al. [21]. In comparison to their work,
we applied a broader search methodology and identified more approaches. None
of these studies consider industrial approaches such as platforms and focus pre-
dominantly on smart contracts.

In summary, while numerous studies on issues regarding smart contract de-
velopment have been conducted, to the best of our knowledge, a comprehensive
review of the state-of-the-art of MDE and low-code/no-code approaches from
both academia and industry in this field is missing so far.

3 Research Methodology

For answering the three research questions we will employ the following re-
search methodology. At first we review existing academic MDE approaches for
blockchain applications in the form of a structured literature review (SLR).
Thereby we follow the guidelines by Webster and Watson [35] and vom Brocke
et al. [6]. The initial corpus of the SLR was generated by searching all key-
word combinations from two groups, where group one included ’blockchain,
distributed ledger, smart contract ’ and group two ’enterprise model, conceptual
model, business model, model-driven, no-code, low-code’. These keywords were
selected based on the domain understanding of the authors. We expected the
relevant concepts to be dispersed, thus we chose a broad set of keywords.

For discovering relevant industrial approaches, we reverted to expert knowl-
edge from industry in the field of low-code development combined with our own
searches. On this bases, we conducted (1) a survey of available platforms towards
suitability for blockchain application development and (2) the implementation
of a blockchain use case as an evaluation. This exploratory research approach
is directed towards discovering requirements for future platforms that combine



4 S. Curty et al.

blockchain application development with the state-of-the-art from academia and
industry.

4 Academic MDE Approaches

In the following subsections, we review approaches of the academic discipline
model-driven engineering in regard to development solutions for blockchains.

Model-driven engineering introduces models as primary artifact to the soft-
ware development process in order to address numerous challenges of software
engineering [5,27]: First, the common understanding of software artifacts can
be facilitated by domain-specific models, as such models are easier to interpret
for humans than code. Second, model-based reasoning allows the verification
of software, e.g., to determine the fulfillment of security properties. And third,
well-defined models allow developers to create software artifacts in an automated
fashion, which are correct-by-construction, with no or reduced coding effort. To
identify existing MDE approaches that target specifically the development of
blockchain applications, we conducted a systematic literature review as elabo-
rated in the following.

4.1 Review Process

The systematic review process as shown in Figure 1 follows the guidelines by [35]
and [6]. To obtain an initial corpus of publications, we performed keyword
searches in step (S-1) on ACM, Springer, and IEEE Explore with the search
strings shown in Table 1. From the resulting corpus, duplicates were removed in
step (S-2). Due to the large number of documents, we filtered the publications
by outlets in step (S-3) that typically publish papers in software engineering,
model-driven engineering or information systems. Before the fulltext analysis,
the reduced corpus was then screened by titles in step (S-4).

 
ACM

 
Springer IEEE

Explore

 
DBLP

(S-1)
Keyword
searches

2292 2064(S-2) 
Duplicate
removal

352(S-3) 
Outlet
filtering

124(S-5) 
Manual
outlet

screening

87(S-4) 
Title

screening

107

(S-6) 
Merge

39

(S-7) 
Paper

assessment

280

(S-8) 
B/F

search

(S-11) 
Final

selection

108(S-10) 
Concept
selection

4010 (S-9) 
Pass

assessment

Fig. 1. Academic Literature Review Process



Blockchain Application Development 5

As basis for this fourth step we formulated keyword criteria, whereby the
title should contain one of ”conceptual”, ”model”, ”process”, ”execution”, ”pro-
cess”, ”architecture”, ”framework”, ”design”, ”development”, ”pattern”, ”use
case”, ”supply chain”, ”database”, ”storage”, ”verification”, ”generation”, ”lan-
guage”, and mention a blockchain-related word, such as ”distributed”, ”chain”,
”contract”. Additionally, we analyzed all titles to capture promising publica-
tions. In parallel, we screened in step (S-5) the table of contents of selected
outlets in software engineering and related disciplines by applying the same
process as in (S-4). That is, we screened all proceedings, workshops, issues,
etc., published in one of the following outlets from 2015 to Nov. 2021: BCCA,
BMSD, BPMDS/EMMSAD, BRAINS, COINS, CSIMQ, CVCBT, DAPPCON,
DK, EMISA, ER, ICBC, ICBCT, IEEE Blockchain, IEEE ICBC, IJISMD,
MoDELS, PoEM and SoSyM. These two sets of publications were then merged
and duplicates removed (S-6).

Search string Results

(”blockchain” OR ”distributed ledger” OR ”smart contract” OR ”smart-contract”) AND
(”All ”business model” OR ”business modeling”) AND (year>2014)

1625

(”blockchain” OR ”distributed ledger” OR ”smart contract” OR ”smart-contract”) AND
(”All ”enterprise model” OR ”enterprise modeling”) AND (year>2014)

40

(”blockchain” OR ”distributed ledger” OR ”smart contract” OR ”smart-contract”) AND
(”All ”conceptual model” OR ”conceptual modeling”) AND (year>2014)

370

(”blockchain” OR ”distributed ledger” OR ”smart contract” OR ”smart-contract”) AND
(”All ”model driven” OR ”model-driven”) AND (year>2014)

181

(”blockchain” OR ”distributed ledger” OR ”smart contract” OR ”smart-contract”) AND
(”All ”no code” OR ”no-code” OR ”low code” OR ”low-code”) AND (year>2014)

76

Table 1. Simplified search strings used and results found on ACM, IEEE Explore, and
Springer. The concrete syntax of search strings varies for each search portal.

In the next step, the publications were assessed by at least reading the ab-
stract and reviewing tables and images (S-7), considering the inclusion criteria
that (i) the publication should be directly related to distributed ledger technolo-
gies, and (ii) creates, discusses, or presents a modeling approach. Publications
using models to only illustrate software, systems, or a use case, e.g., by means
of a standard UML use case diagram, were excluded. For the remaining pub-
lications, we then performed a recursive backward-forward search, as proposed
in [34] (S-8): references and citations were screened, seemingly relevant publica-
tions added to the set, and subsequently assessed as in step (S-7). For all relevant
new additions, a backward-forward search was again performed.
Eventually, no new relevant publications could be found and the backward-
forward search was concluded. Of all thus collected publications, 108 fulfilled the
assessment criteria (S-9). We further filtered by contained concepts in step (S-
10), i.e., (i) the approach has MDE characteristics, (ii) it must be tool-assisted,
and (iii) include generation of code, application artifacts, or some executable
specifications. The motivation for choosing these criteria is founded in the com-
monalities of low-code/no-code and MDE, as elaborated in Section 1. Finally,
we selected 10 approaches we consider representative for the full spectrum of
academic approaches.



6 S. Curty et al.

4.2 Results

In Table 2, the final selection of academic approaches from (S-11) is shown. We
further evaluated the approaches regarding the required user expertise - see col-
umn Expertise. Approaches where a user must not write any code and only basic
understanding of blockchain concepts is required, we consider suitable for non-
technical users. In contrast, approaches that require understanding of advanced
concepts or chain-specific features, e.g. gas costs in Ethereum, we consider suit-
able for non-programmers. Finally, if the user has to write any code, the approach
is only suitable for programmers.

For the comparison of the academic approaches, we classified them in addi-
tion using three layers, which are based on the traditional layers of ArchiMate1.
This choice is motivated by a previous application of ArchiMate in the context
of Blockchain use cases [9]. Approaches on the (i) business layer integrate
modeling of business concepts, such as use cases from a top-down perspective.
The (ii) application layer includes approaches which integrate life-cycle and
deployment management, or integration facilities. Finally, on the (iii) technol-
ogy layer, we consider approaches whose scope is limited to the generation of
smart contract code from models.

Ref. Name BP Modeling
language

Layer Impl. platform Expertise OS

[3] Archi2HC H ArchiMate Business Archi ••• -
[22] Caterpillar E BPMN Application custom (Node.js,

bpmn-js)
•oo +

[17] ChainOps E domain-specific Application AstraKode
Blockchain Modeler

•oo -

[28] Das Contract E,C DEMO,
BPMN,
Blockly

Technology custom (.Net,
Node.js)

••o o

[25] iContractBot MC domain-specific
(iContractML)

Technology Xatkit •oo o

[14] iContractML MC domain-specific
(iContractML)

Technology Obeo Designer
(Eclipse Sirius)

•oo o

[30] LATTE E domain-specific Technology custom (Electron) ••o +
[32] LEMMA E domain-specific

(LEMMA)
Application LEMMA ••• o

[20] UML2Go H UML Technology Obeo Acceleo
(Eclipse)

••o -

[23] VeriSolid E domain-specific
(state machine)

Technology WebGME ••o +

Name: Short name of the approach. If none was given by the authors we assigned one.
BP: Blockchain platform, E: Ethereum, C: Cardano, H: Hyperledger Fabric, MC: Multi-chain
Exp.: Required expertise, •: non-technical, ••: non-programmer, •••: programmer
OS: open source, +: available, o: no license specified, -: not available

Table 2. Selected academic, model-driven approaches for blockchain application de-
velopment that apply code generation.

In the entire corpus of publications, we could identify only one approach
which clearly lies on the business layer (i) and simultaneously permits the gen-
eration of code artifacts. Babkin et al. [3] propose a mapping between ArchiMate
concepts and Hyperledger Composer constructs. From an ArchiMate model, a

1 See https://www.opengroup.org/archimate-forum/archimate-overview

https://www.opengroup.org/archimate-forum/archimate-overview


Blockchain Application Development 7

project artifact for Hyperledger Fabric is generated. However, a programmer
must implement the business logic manually. The Das Contract approach [28]
applies modeling languages of DEMO to design and generate smart contracts.
While DEMO is traditionally used to model organizations, this is however not
part of of this approach.
On the application layer (ii) lie approaches and tools offering integration and
management capabilities for the generated artifacts. Caterpillar [22] is a process
execution system, in which processes are modeled as BPMN in a web-based visual
editor. The models may be translated to Solidity code or into an intermediate
representation to be executed by an on-chain execution engine. Furthermore,
the tool offers a model repository and monitoring of processes. In the Chain-
Ops [17] framework, smart contracts are composed visually from pre-defined
templates, subsequently validated against domain-specific constraints and poli-
cies. Models then are sent to a REST service to be translated and deployed.
The vision of ChainOps is to offer a complete and integrated Dapp life-cycle
solution for the OntoChain2 ecosystem. The work of Trebbau et al. [32] is an
extension of LEMMA, a modeling framework for microservices. Using the mod-
eling languages of LEMMA, code artifacts for the connection to chain networks
and smart contract interaction may be generated. The focus of this approach is
the model-based integration of on-chain components.
Most identified approaches focus on the generation of smart contract code with-
out offering additional life-cycle capabilities, and are thus assigned to the tech-
nology layer (iii). Suitable for non-technical users are approaches which ab-
stract blockchain and platform-specific concepts. The modeling language iCon-
tractML [14] has a visual notation with few elements for the specification of the
structure of smart contracts. Models are translated to DAML, which is compat-
ible with various chains. Based on this language, iContractBot [25] allows the
user to specify models conversationally. Another approach targeting multiple
chains is the aforementioned Das Contract, in which the behavior of a contract
is specified in Blockly. Since Blockly contains coding concepts, we do not con-
sider it suitable for non-technical users. Approaches specifically for Ethereum
are LATTE [30] and VersiSolid [23]. The former relies on a combination of form-
based definition of the structure of Solidity contracts and their implementation,
defined visually in a notation similar to flow-charts. In the latter, Solidity con-
tracts are modeled as state machines in visual fashion. This approach focuses on
the formal verification of the generated contract. Another platform-specific ap-
proach is UML2Go [20] for Hyperledger Fabric. Contracts are modeled as UML
class and sequence diagrams and then translated to Go chaincode using model
transformation.
The results show that academic approaches predominantly focus on the platform-
specific generation of smart contract code, while holistic solutions are sparse.

2 https://ontochain.ngi.eu/

https://ontochain.ngi.eu/


8 S. Curty et al.

5 Industrial Low-Code and No-Code Approaches

For practitioners, an increasing number of low-code and no-code solutions is
available. In an informal compilation by Invernizzi and Tossell3, solutions from
145 companies were found, such as website and app builders, e-commerce ser-
vices, and data dashboards. The identified solutions differ substantially in the
scope and applications they target. With the aim of assessing the scope and
applicability of industrial approaches towards blockchain applications, we con-
ducted a review of state-of-the-art solutions. The data sources for this review are
(DS-1): the compilation by Invernizzi and Tossell, (DS-2): practical approaches
from prior research [15], and (DS-3): additional research on blockchain-specific
no-code and low-code solutions available on the web.

5.1 Review Process

We applied a three-step process, consisting of an initial filtering step (S-1), the
evaluation of scope and applicability for blockchains in step (S-2), and the classi-
fication of solutions applicable to blockchains (S-3). Initially, 169 solutions were
identified. In (S-1), we manually retrieved descriptions from the vendor websites
in addition to information provided by (DS-1), followed by filtering out duplicate
entries, those that could not be reached on the web, or did not provide sufficient
information on their websites (e.g. closed beta software). The remaining 150 so-
lutions were evaluated in (S-2) regarding their scope of blockchain integration.
Finally, 40 solutions were identified as applicable for blockchains.

5.2 Results

For discussing available platforms and their blockchain integration, we distin-
guish between 1st degree and 2nd degree integration. A platform supports 1st
degree integration if it interacts directly with blockchains through its software
or services. 2nd degree integration is supported if an external service could be
integrated that offers 1st degree integration. The criteria for the selected plat-
forms (S-3) listed in Table 3 are that they (a) offer blockchain integration of 1st
or 2nd degree and (b) were considered a low-code or no-code approach.

Categories with 1st degree integration: 1st degree blockchain integra-
tion has been found in 17 solutions intended for building websites and apps, work-
flow automation, and smart contract development. Exemplary integration fea-
tures in the app builder category are the creation of decentralized apps (Dapps)
and the integration of cryptocurrency-related data, e.g. price information. App
builders such as Outsystems (5) and Bubble (7) support Dapps, where compo-
nents of a mobile, desktop, or web app can send blockchain transactions and call
smart contract functions, e.g. through the MetaMask browser extension.
For website builders, blockchain integration has only been found for integrating

3 https://pinver.medium.com/decoding-the-no-code-low-code-startup-universe-and-
its-players-4b5e0221d58b



Blockchain Application Development 9

Cat. Name Website d1 d2 s Cat. Name Website d1 d2 s

1 AM Adalo adalo.com - + o 21 SC DAML daml.com + - +
2 AM BuildFire buildfire.com - + o 22 SC Simba Chain simbachain.com + - -
3 AM Glide glideapps.com + + - 23 SC Dappbuilder dappbuilder.io + - +
4 AM Axonator axonator.com - + - 24 SP Airtable airtable.com - + -
5 AW Outsystems outsystems.com + - - 25 WA n8n n8n.io + - +
6 AW Builder.ai builder.ai + - - 26 WA Zapier zapier.com + + o
7 AW Bubble bubble.io + + - 27 WA Integromat integromat.com + + -
8 AW Landbot landbot.io - + - 28 WA Process Str. process.st - + -
9 AW Draftbit draftbit.com - + o 29 WA IFTTT ifttt.com + + -

10 D Parabola parabola.io - + - 30 WA NodeRed nodered.org + + +
11 D Gyana gyana.com - + o 31 WA Aurachain aurachain.ch + - -
12 D Obviously AI obviously.ai - + - 32 WB Webflow webflow.com + + -
13 D Levity levity.ai - + - 33 WB Unstack unstack.com - + -
14 F Arengu arengu.com - + o 34 WB Squarespace squarespace.com - + -
15 F Formstack formstack.com - + - 35 WB Linktree linktr.ee - + -
16 F Tally tally.so - + - 36 WB Pory pory.io - + -
17 IN Budibase budibase.com - + - 37 WB Softr softr.io - + -
18 IN Flowdash flowdash.com - + - 38 WB Xooa xooa.com + - o
19 IN Jet Admin jetadmin.io - + o 39 WB ICME icme.io + - -
20 IN Windward windwardstudios.com - + - 40 WB Atra atra.io + - o

Cat.: Category, AM: app builder with mobile focus, AW: app builder with web focus, D: data
F: forms, IN: internal tools, SC: smart contracts, SP: Spreadsheets, WA: workflow automation
WB: website builders, d1: 1st degree integration, d2: 2nd degree integration, s: open source
+: applicable, o: partially applicable, -: not applicable

Table 3. Low- and no-code approaches with 1st or 2nd degree blockchain integration.

cryptocurrency-related data, with the exception of ICME (39). ICME is a web-
site builder for creating websites on the Dfinity blockchain. The app and the
resulting websites are hosted on Dfinity.
Workflow automation tools allow for the execution of user-defined workflows.
A workflow is entered via a visual flow-based editor, showing the subsequent
flow of steps for execution along with execution logic, or using dialogs or forms.
Exemplary integration features are transactions and smart contract support for
the Ethereum blockchain in Zapier (26) and Aurachain (31), and support for
the Hyperledger Fabric blockchain in NodeRed (30) and Aurachain (31). Fur-
ther services support crypto-currency data integrations.
Smart contract development is supported by integration features in Hyperledger
Fabric, Hyperledger Sawtooth, Amazon QLDB, and others in DAML (21), a
domain-specific language for textual descriptions of smart contracts. The tex-
tual language uses a syntax with natural language elements that can be inter-
preted and deployed for the supported platforms. Smart contract design based
on templates and a visual editor is found for Ethereum, Hyperledger Fabric,
and others in SimbaChain (22). The editor supports the creation of smart con-
tracts by defining assets and transactions. Dappbuilder (23) offers smart con-
tract creation from pre-defined templates for Ethereum, Polygon, and others.
The approach limits applicability to standardized contracts, e.g. issuing tokens
according to the Ethereum ERC-20 and similar token standards.

http://www.adalo.com
http://daml.com
http://buildfire.com
http://simbachain.com
http://www.glideapps.com
http://dappbuilder.io
http://axonator.com
http://airtable.com
http://outsystems.com
http://n8n.io
http://builder.ai
http://zapier.com
http://bubble.io
http://www.integromat.com
http://landbot.io
http://www.process.st
http://draftbit.com
http://ifttt.com
http://parabola.io
http://nodered.org
http://gyana.com
http://www.aurachain.ch
http://www.obviously.ai
http://webflow.com
http://levity.ai
http://www.unstack.com
http://arengu.com
http://www.squarespace.com
http://formstack.com
http://linktr.ee
http://tally.so
http://pory.io
http://budibase.com
http://www.softr.io
http://flowdash.com
http://xooa.com
http://jetadmin.io
https://www.icme.io
http://www.windwardstudios.com
http://atra.io


10 S. Curty et al.

Categories with 2nd degree integration: 2nd degree blockchain inte-
gration has been found in 30 solutions intended for building websites, apps, or
forms, for workflow automation, internal tools for companies, and for data pro-
cessing and spreadsheets. 7 solutions also offer 1st degree blockchain integration.
The integration features across the categories rely on another services providing
a direct integration for blockchain applications. Among the no-code or low-code
applications, it is typical to integrate other services in the fashion of a composi-
tion, for example, creating an application in an app builder with data provided
by an external service. Blockchain integration features, due to this capability,
rely on other services for blockchain integration.
Notably, 28 of the 30 solutions integrate with Zapier (26), thereby offering sup-
port for interacting with Ethereum smart contracts and transactions. These con-
cern website and app builders such as Glide (3), which can embed dialogs for
smart contracts and transactions in this way, in addition to integrating cryp-
tocurrency data. Similarly, form builders allow defining input fields and the
processing of submitted data through integrations. Arengu (14) is a typical ex-
ample which also supports visualization with a flow-based editor.
Workflow automation tools offer the integration as part of the executable work-
flow definition. For example, a transaction may be sent after the workflow has
been started by another action such as entering data in a spreadsheet. This is
often accomplished by integrating AirTable (24). Internal tools include software
tools for enterprises, automating typical enterprise resource tasks or operational
tasks, e.g. using JetAdmin (19), or business processes as in Flowdash (18). Inte-
grations in this context can be triggered similar to workflow automation tools.
Data processing and spreadsheets tools permit integrating data sources, thereby
enabling for example the processing of newly appearing blockchain transac-
tions, filtering for specified criteria, and calculations such as the aggregation
of transferred amounts. Examples where this is possible are the spreadsheet tool
AirTable (24) and data analytics tools such as Parabola (10).

The results show that the integration possibilities for the creation of web-
sites or apps hinge on few services such as Zapier (26), predominantly found in
the workflow automation category. Typical integration features consist of access
to blockchain transactions or cryptocurrency data. Further integration possibil-
ities with APIs on a technical level are very common, however, they were not
considered no-code or low-code when using using Webhooks, Rest, other forms
of HTTP requests or technical API descriptions. For the development of smart
contracts, few no-code instances could be found in practice, with all of them
requiring expert knowledge in blockchains.

6 Use Case for Low-Code Blockchain Development

For conducting a first evaluation of the state-of-the-art in realizing blockchain
applications using low-code and no-code approaches (RQ2), we implemented a
blockchain app with a smart contract in the area of supply chain tracking and
tracing. For this purpose, we selected the Outsystems low-code platform, which



Blockchain Application Development 11

targets developers, together with the SimbaChain platform as an exemplary no-
code platform that is directed towards end-users.

The goal was to provide a trusted and up-to-date IT system shared by dis-
tributed supply chain participants. In this domain, blockchain-based solutions
promise information that is available as a trusted source in near-time or real-time
among network participants [16,7]. In particular, the tracking of goods in inter-
national shipments is a challenging area, involving the coordination of material
flows from suppliers and manufacturers through container and sea freight compa-
nies to distributors. Additionally, products and materials need to be traced back
to their source. Without a trusted IT infrastructure, shipments are mostly doc-
umented using paper documents, with point-to-point communication by e-mail,
phone, and siloed IT systems, resulting in high transaction costs [37,7].

Supplier 1

Ethereum Blockchain

Vendor 1 Supply Chain 

Network Model

Network Layer

Application Layer

Manufacturer 1

Outsystems
App

Smart Contract
Consensus Layer

Connector

Simba
REST API

Outsystems
App

Connector

Simba
REST API

Outsystems
App

Connector

Simba
REST APISimbaChain

Outsystems
Service Studio

Design-Time Run-Time

generates

generates

Supply Chain

Fig. 2. Blockchain-based Architecture for Supply Chain Tracking and Tracing.

Figure 2 shows the implemented three-layer architecture with an exemplary
network. Using Outsystems studio, an app was designed for registering suppliers,
manufacturers, and vendors together with freight forwarding companies, com-
modities, and shipments. On the application layer, Supplier 1 might scan a ship-
ment through a Global Trade Item Number (GTIN) with a smartphone camera
and submit related IDs and attributes. For Manufacturer 1 and Vendor 1, this
data becomes available and is updated with shipment events by freight providers
and forwarders. Figure 3 shows this data in the app during development. The
Ethereum blockchain is integrated for establishing a consistent view of data on
the network and consensus layers of the architecture. In Outsystems, a REST
API hosted by Simba relays requests to the Ethereum smart contract. Smart



12 S. Curty et al.

contracts and APIs are generated together through SimbaChain by specifying
the model in Figure 4.

Fig. 3. Design of mobile app (left-hand side) in Outsystems Service Studio (right-hand
side) using a flow-based editor for processing commodity data records of shipments.

Fig. 4. Smart contract design in SimbaChain using a visual editor for a data model of
transactions (blue) and assets (red).

7 Discussion and Requirements for Future Developments

The review of academic approaches for model-driven engineering for blockchain
applications has shown that most approaches focus on the technical level and
not all of them support code generation. Rather, many approaches target the
formal verification of smart contracts and only some approaches provide working
prototypes. Approaches that integrate the business, application, and technical
layer have not yet been proposed prominently in the literature. These would



Blockchain Application Development 13

however bring benefits in terms of a holistic view on blockchain application
design and should be investigated in the future.

The reviewed no-code and low-code approaches as used in industry showed
the high maturity of these platforms. This concerned in particular the high
usability, the availability of a broad range of interfaces for cloud-based and
blockchain integrations and the possibility of cross-platform development. On
the downside, it is hard to trace errors and debug applications on some low-code
platforms as implementation details are hidden. Although some platforms offer
the inspection of the generated code, this requires again technical know-how.

The practical use case permitted further insights. Regarding the blockchain
implementation through SimbaChain, a major architectural limitation is the gen-
eration of APIs used as relay when accessing the smart contract. Additional vali-
dation of the blockchain is required for assessing the consistency of data. From a
user perspective, the SimbaChain platform requires only high-level knowledge of
data types in addition to the visual entity concept documented in the platform.
While SimbaChain might thus be considered a no-code approach, it is limited
to the presented operations and its resulting implementation requires expert
knowledge for evaluating implementation trade-offs. The app development with
Outsystems allows for a visual modeling of program actions and control struc-
tures as shown in Figure 3. The specification of the individual elements as well as
other application components required the knowledge of software development
concepts, such as variables, datatypes, event listeners, and HTTP request and,
in one case, debugging through the logging and interception of requests. On the
other hand, Outsystems might be considered a low-code approach with com-
plex capabilities suitable for developers. During development, code consistency,
spotting errors visually, discussing and communicating with domain experts, and
cross-platform generation have proven beneficial.

8 Conclusion

In this paper we reviewed academic model-driven engineering approaches and
industrial low-code and no-code platforms for supporting the development of
blockchain-based applications. Whereas academic approaches mostly focus on
the technical aspects of development, industrial approaches showed a high ma-
turity in terms of usability and integration capabilities. For future developments,
more holistic, cloud-based approaches involving business, application, and tech-
nical layers seem desirable. With regard to academic approaches, the provision
of integration capabilities and sustainable prototypical implementations present
current major challenges.

Acknowledgment

This work was supported by the Swiss National Science Foundation project
Domain-Specific Conceptual Modeling for Distributed Ledger Technologies [196889].



14 S. Curty et al.

References

1. Ait Hsain, Y., Laaz, N., Mbarki, S.: Ethereum’s smart contracts construction and
development using model driven engineering technologies: a review. Procedia Com-
puter Science 184, 785–790 (2021)

2. Antonopoulos, A.M., Wood, G.: Mastering ethereum: building smart contracts and
dapps. O’reilly Media (2018)

3. Babkin, E., Komleva, N.: Model-driven liaison of organization modeling approaches
and blockchain platforms. In: Advances in Enterprise Engineering XIII. pp. 167–
186. Springer (2020)

4. Bock, A.C., Frank, U.: Low-Code Platform. Business & Information Systems En-
gineering 63(6), 733–740 (2021)

5. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in prac-
tice, second edition. Synthesis Lectures on Software Engineering 3(1), 1–207 (2017)

6. vom Brocke, J., Simons, A., Riemer, K., Niehaves, B., Plattfaut, R., Cleven, A.:
Standing on the shoulders of giants: Challenges and recommendations of literature
search in information systems research. Commun. Assoc. Inf. Syst. 37, 9 (2015)

7. Chen, W., Botchie, D., Braganza, A., Han, H.: A transaction cost perspective on
blockchain governance in global value chains. Strategic Change 31(1), 75–87 (2022)

8. Clohessy, T., Acton, T., Rogers, N.: Blockchain Adoption: Technological, Organi-
sational and Environmental Considerations, pp. 47–76. Springer (2019)

9. Curty, S., Härer, F., Fill, H.G.: Towards the comparison of blockchain-based ap-
plications using enterprise modeling. In: ER Demos/Posters. CEUR-WS (2021)

10. Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi, M., Wimmer, M.:
Low-code development and model-driven engineering: Two sides of the same coin?
Software and Systems Modeling (Jan 2022)

11. Fairley, P.: Ethereum will cut back its absurd energy use. IEEE Spectrum 56(1),
29–32 (2019)

12. Fill, H.G., Härer, F., Muff, F., Curty, S.: Towards augmented enterprise models
as low-code interfaces to digital systems. In: International Symposium on Business
Modeling and Software Design. pp. 343–352. Springer (2021)

13. Foxley, W., Kim, C.: Valid points: Ethereum’s proof-of-stake may happen
sooner than you think (Mar 2021), https://www.coindesk.com/tech/2021/03/17/
valid-points-ethereums-proof-of-stake-may-happen-sooner-than-you-think/

14. Hamdaqa, M., Metz, L.A.P., Qasse, I.: IContractML: A domain-specific language
for modeling and deploying smart contracts onto multiple blockchain platforms.
In: 12th System Analysis and Modelling Conference. p. 34–43. ACM (2020)

15. Härer, F., Fill, H.G.: A Comparison of Approaches for Visualizing Blockchains and
Smart Contracts. Jusletter IT Weblaw February 2019 (2019)

16. Helo, P., Shamsuzzoha, A.: Real-time supply chain—A blockchain architecture for
project deliveries. Robotics and Computer-Integrated Manufacturing 63, 101909
(Jun 2020)

17. van den Heuvel, W.J., Tamburri, D.A., D’Amici, D., Izzo, F., Potten, S.: Chain-
ops for smart contract-based distributed applications. In: Business Modeling and
Software Design. pp. 374–383. Springer (2021)

18. Holotiuk, F., Moormann, J.: Organizational adoption of digital innovation: the case
of blockchain technology. In: ECIS Conference. p. 202 (2018)

19. Hu, B., Zhang, Z., Liu, J., Liu, Y., Yin, J., Lu, R., Lin, X.: A comprehensive sur-
vey on smart contract construction and execution: paradigms, tools, and systems.
Patterns 2(2), 100179 (2021)

https://www.coindesk.com/tech/2021/03/17/valid-points-ethereums-proof-of-stake-may-happen-sooner-than-you-think/
https://www.coindesk.com/tech/2021/03/17/valid-points-ethereums-proof-of-stake-may-happen-sooner-than-you-think/


Blockchain Application Development 15

20. Jurgelaitis, M., Drungilas, V., Čeponienė, L., Vaičiukynas, E., Butkienė, R.,
Čeponis, J.: Smart contract code generation from platform specific model for hyper-
ledger go. In: Trends and Applications in Information Systems and Technologies.
pp. 63–73. Springer (2021)

21. Levasseur, O., Iqbal, M., Matulevicius, R.: Survey of Model-Driven Engineering
Techniques for Blockchain-Based Applications. In: Proceedings of the Forum at
Practice of Enterprise Modeling 2021. vol. 3045, pp. 11–20. CEUR (Nov 2021)

22. López-Pintado, O., Dumas, M., Garćıa-Bañuelos, L., Weber, I.: Interpreted execu-
tion of business process models on blockchain. In: 2019 IEEE 23rd International
Enterprise Distributed Object Computing Conference (EDOC). pp. 206–215 (2019)

23. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: Verisolid: Correct-by-design
smart contracts for ethereum. In: Goldberg, I., Moore, T. (eds.) Financial Cryp-
tography and Data Security. pp. 446–465. Springer (2019)

24. Nguyen, C.T., Hoang, D.T., Nguyen, D.N., Niyato, D., Nguyen, H.T., Dutkiewicz,
E.: Proof-of-stake consensus mechanisms for future blockchain networks: Funda-
mentals, applications and opportunities. IEEE Access 7, 85727–85745 (2019)

25. Qasse, I., Mishra, S., Hamdaqa, M.: iContractBot: A chatbot for smart contracts’
specification and code generation. In: IEEE/ACM 3rd Int. Workshop on Bots in
Software Engineering. pp. 35–38 (2021)

26. Sahay, A., Indamutsa, A., Di Ruscio, D., Pierantonio, A.: Supporting the under-
standing and comparison of low-code development platforms. In: SEAA Confer-
ence. pp. 171–178. IEEE (2020)

27. Schmidt, D.: Guest editor’s introduction: Model-driven engineering. Computer
39(2), 25–31 (2006)

28. Skotnica, M., Pergl, R.: Das contract - a visual domain specific language for mod-
eling blockchain smart contracts. In: Advances in Enterprise Engineering XIII. pp.
149–166. Springer (2020)

29. Sánchez-Gómez, N., Torres-Valderrama, J., Garćıa-Garćıa, J.A., Gutiérrez, J.J.,
Escalona, M.J.: Model-based software design and testing in blockchain smart con-
tracts: A systematic literature review. IEEE Access 8, 164556–164569 (2020)

30. Tan, S., S Bhowmick, S., Chua, H.E., Xiao, X.: Latte: Visual construction of smart
contracts. In: International Conference on Management of Data. p. 2713–2716.
ACM, New York, NY, USA (2020)

31. Tisi, M., Mottu, J.M., Kolovos, D., De Lara, J., Guerra, E., Di Ruscio, D., Pieran-
tonio, A., Wimmer, M.: Lowcomote: Training the next generation of experts in
scalable low-code engineering platforms. In: STAF 2019 (2019)

32. Trebbau, S., Wizenty, P., Sachweh, S.: Towards integrating blockchains with mi-
croservice architecture using model-driven engineering. In: Agile Processes in Soft-
ware Engineering and Extreme Programming. pp. 167–175. Springer (2021)

33. Vacca, A., Di Sorbo, A., Visaggio, C.A., Canfora, G.: A systematic literature re-
view of blockchain and smart contract development: Techniques, tools, and open
challenges. Journal of Systems and Software 174, 110891 (2021)

34. Watson, R.T., Webster, J.: Analysing the past to prepare for the future: Writing a
literature review a roadmap for release 2.0. J. Decis. Syst. 29(3), 129–147 (2020)

35. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: Writing
a literature review. MIS Q. 26(2) (2002)

36. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE software 31(3), 79–85 (2013)

37. Zeng, F., Chan, H.K., Pawar, K.: The adoption of open platform for container
bookings in the maritime supply chain. Transportation Research Part E 141(C)
(2020)


	Blockchain Application DevelopmentUsing Model-Driven Engineering andLow-Code Platforms: A Survey

