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Abstract
The combination of techniques from machine learning and
knowledge engineering can lead to new types of information
systems for processing data and knowledge by machines. A
further step is to add humans in the loop as proposed by
Hybrid Intelligence for amplifying human intellect and en-
abling machines to learn from humans. It then becomes es-
sential to understand the provenance of data and knowledge
and trace the accountability of humans and machine-based
agents. This is a major prerequisite to establish trust in such
systems. Thus, we propose a framework for addressing this
aspect using blockchains as a trustful, decentralized ledger.
We discuss how blockchains can support the attestation of
patterns of data, knowledge, algorithms and human interven-
tions as well as relations between these components. Further-
more, the search for existing patterns can be realized.

Introduction
The field of artificial intelligence has traditionally regarded
symbolic as well as non-symbolic approaches for represent-
ing and processing knowledge (Russell and Norvig, 2012;
Dorffner, 1991). Whereas the first direction aims to rep-
resent knowledge in the form of symbols and mechanisms
for efficiently searching, rearranging or manipulating these
symbols, non-symbolic approaches assume that machines
can acquire knowledge through interactions with their en-
vironment. In these approaches, purely numeric representa-
tions are typically applied by recognizing desirable patterns,
classifying, or clustering large amounts of data. Based on
the resulting numerical models, similar patterns, clusters or
classifications can be subsequently identified in other data.

However, both directions have deficiencies. Symbolic
approaches are often limited by their requirement to ex-
press knowledge structures in rigid form that is amenable
to machine-processing. Therefore, they typically revert to
logic-based formalisms that fall short of representing fuzzy
and heuristic aspects. On the other hand, numeric represen-
tation approaches rely on past data in large volumes and their
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results are hard to introspect. Therefore, it has been argued
to combine both types of representation for mutual bene-
fits (Minsky, 1991).

Recently, the discussion on such combinations has been
taken up again. It could be shown that today several domains
make use of AI systems that join machine learning tech-
niques with knowledge reasoning approaches (Martin et al.,
2019; Harmelen and Teije, 2019). In addition, the wide use
of AI systems and their already large influence on our daily
lives has raised the issue of trust. Particularly, cases where
data and algorithms were used in ways that led to racial or
gender biases have been extensively discussed in the media,
e.g. (Obermeyer et al., 2019; Buolamwini and Gebru, 2018).
Also in the context of knowledge reasoning, trust has been a
core aspect. The provenance of data and the deductive pro-
cesses used were identified as essential to decide whether re-
sults can be trusted, e.g. McGuinness (2004). In artificial in-
telligence, these considerations have been extended towards
ethical considerations. It is claimed that machine-based rea-
soning should not only be transparent and able to explain
itself but also consider societal values, moral and ethical as-
pects and the priorities of stakeholders in different cultural
contexts (Dignum, 2018).

Another direction mentioned early in literature adds fur-
ther benefits in terms of intelligent information processing.
Whereas the goal of artificial intelligence is and has been
the perfection of machines and their capabilities in solv-
ing tasks intelligently, the idea of hybrid intelligence sys-
tems promoted socio-technical systems that adapt interac-
tively (Lomov and Venda, 1977). Thereby, particular hu-
man capabilities such as creativity, common sense, empathy
or ethical responsibility are integrated with machine learn-
ing and reasoning approaches (Dellermann et al., 2019).
Such human-in-the-loop systems have been described for
example in the medical domain for enabling interactive ma-
chine learning (Holzinger, 2016) or by using visual analyt-
ics for letting humans interpret complex machine learning
results (Hund et al., 2016).

Following these developments of combining machine
learning and knowledge reasoning systems and the human-
in-the-loop concept, the question arises how trust can be
established for these hybrid intelligence systems. Despite
the great technical capabilities offered by them, it needs to
be ensured that their results match the expected outcomes



in terms of reliability within a specific context. As already
mentioned, the knowledge about the provenance of infor-
mation is a central aspect to permit trust decisions (Artz
and Gil, 2007), as well as the accountability, responsibil-
ity and transparency of how information is processed as dis-
cussed in the context of ethical AI (Dignum, 2017). Conse-
quently, trust can be technically supported through security
mechanisms in the sense of policy-based trust where the ac-
cess to and the origin of information is regulated, e.g. using
certificates to identify human and machine agents, as well
as through the history of past interactions as apparent by
reputation-based trust (Bonatti et al., 2005). In the follow-
ing we assume that in both cases, humans are responsible for
the initial creation of hybrid intelligence systems, the use of
the right data, and the behavior these systems may exhibit
- at least to the extent where they can be held accountable,
which is not always clearly decidable in case of autonomous
systems (Matthias, 2004).

Based on this assumption, it seems essential to make the
composition of hybrid intelligence systems transparent so
that everyone can verify the origin of data, algorithms, and
human interventions as well as the usage of these compo-
nents. Therefore, the provenance of the according informa-
tion has to be recorded in a secure and tamper-proof fash-
ion. Ideally, this should be done in an open accessible and
thus transparent way that can be verified by any party. This
would permit ensuring the traceability and thus the responsi-
bility for all components of hybrid intelligence systems. As a
means for meeting these requirements we consider in the fol-
lowing properties of blockchains. These permit the transpar-
ent, immutable, tamper-proof, and decentralized storage of
information based on distinct consensus protocols and thus
seem well-suited for supporting these tasks. For this pur-
pose we discuss a framework for attesting the components
and the results generated by hybrid intelligence systems on
blockchains, thereby contributing to trust in these systems.

The paper is structured as follows: we will discuss foun-
dations on the combination of machine learning and knowl-
edge reasoning and explain the concepts behind hybrid intel-
ligence. This will be followed by a brief characterization of
blockchains. Subsequently, a framework for attesting hybrid
intelligence components and their execution on blockchains
will be described, followed by corresponding realization re-
quirements in the form of smart contracts in pseudo-code.
Finally, we will discuss execution options and discuss pos-
sible usage scenarios of the intended approach.

Foundations
In this section we briefly discuss foundations on the combi-
nation of machine learning and knowledge reasoning, hybrid
intelligence, and blockchains to familiarize readers with the
core concepts of these topics.

Combination of Machine Learning and Knowledge
Reasoning
Machine learning and knowledge reasoning techniques are
traditionally positioned opposite to each other, considering
their methods and modes of operation. In particular, tech-

niques of the former category are concerned with inductive
learning on the basis of data without known internal struc-
tures. This kind of ”model-free” representation, a term found
in (Pearl, 2018) is the input and output of the learning pro-
cess. In its purest form, internal and unknown structures
model everything obtained from learning. On the opposite
side of the spectrum are knowledge reasoning techniques,
which are concerned with deductive reasoning on explicit
”model-based” representations. Subject to logic, the explicit
symbolic representation is used to infer new knowledge.

Explicit 
Symbolic 
Model

Implicit 
Data
Model

Deductive
Reasoning

Inductive
Learning

ML
(trad. view)

KR
(today’s scope)

ML
(today’s scope)

KR
(trad. view)

Figure 1: Machine Learning and Knowledge Reasoning

However, while the dichotomy is obvious when con-
sidering techniques such as multi-layer (deep) neural net-
work architectures and OWL description logic, the scope of
both machine learning and knowledge reasoning is becom-
ing broader and partially overlapping (Harmelen and Teije,
2019), such that separate representational and processing di-
mensions can be assumed instead of a spectrum - see Figure
1. For example, artificial neural networks may be augmented
with memory, computation and attention concepts (Vaswani
et al., 2017; Hochreiter and Schmidhuber, 1997). Further-
more, Harmelen and Teije argue that recent approaches com-
bine both techniques and can rather be described by the com-
position of their components. The authors describe a ”boxol-
ogy” for this purpose, consisting of Machine Learning (ML)
and Knowledge Reasoning (KR) elements, which can be
combined with Data (Data) and Symbolic (Sym) input and
output representations. For example, a basic combination of
KR and ML with Sym and Data input as well as Sym and
Data output is shown in Figure 2. More complex configura-
tions encompass intermediate abstractions for learning and
reasoning, the explanation of learning and reasoning, and
meta-reasoning. In particular, the design of patterns with hu-
mans in the loop, as discussed later on, is of interest towards
explainable AI and accountability.

Hybrid Intelligence
In the original conception of hybrid intelligence systems, hu-
mans were positioned as central figures where mechanical
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Figure 2: Boxology pattern for machine learning that consid-
ers also symbolic information on which reasoning has been
applied (Harmelen and Teije, 2019, pattern (13))

components only act as tools for them (Lomov and Venda,
1977). The focus lied on the interaction between humans and
machines as socio-technical systems, as opposed to purely
technical systems in artificial intelligence. More recently,
these concepts have seen a revival (Kamar, 2016a,b), includ-
ing the allocation of considerable research funds (HI, 2019).
Today, hybrid intelligence (HI) is regarded as the utilization
of the particular strengths of humans and machines in such a
way that individual or collective human intelligence is com-
bined with artificial intelligence. Dellermann et al. define
hybrid intelligence as the ”the ability to accomplish com-
plex goals by combining human and artificial intelligence to
collectively achieve superior results than each of them could
have done in separation and continuously improve by learn-
ing from each other.” (Dellermann et al., 2019, p. 276).

It can be further distinguished between four sub-fields that
are currently being investigated (HI, 2019): collaborative
HI, where it is focused on the synergy of humans and intel-
ligent agents for solving tasks, adaptive HI, that targets sit-
uations that have not been anticipated by the designers, e.g.
in terms of variable team configurations and changing roles,
explainable HI, where humans and machine agents need to
explain their recognitions, goals, and actions to each other,
and responsible HI, that addresses ethical and legal concerns
as an integral part of HI systems.

As a consequence, in hybrid intelligence systems, hu-
man agents need to be considered on the same level as ma-
chine learning algorithms and reasoners, with distinct re-
quirements in terms of information representation. Possi-
ble interfaces between humans and machines may be vi-
sualizations for representing results from machine calcula-
tions, e.g. (Hund et al., 2016), or human-adequate knowl-
edge and data representations that can serve as input for
machine learning and knowledge reasoning as e.g. found
in conceptual modeling (Fill, 2017; Karagiannis and Buch-
mann, 2016).

Blockchains
Blockchains are a class of technologies for implementing
distributed systems with verifiable storage and execution
based on integrity-secured backward-linked blocks consist-
ing of transactional data (Härer, 2019). In contrast to dis-
tributed database systems, blockchain systems allow for the
public distribution and transparent validation of data among
decentralized network participants. In addition to public
blockchains, permissioned forms that limit write access ex-

ist as well as fully private variants thereby blurring the lines
to the field of distributed databases.

While the initial innovation of a protocol for the veri-
fiable storage and execution of monetary transactions has
evolved to a general execution of smart contract programs
(Buterin, 2013), the original proof-of-work mechanism for
ensuring consensus among the peers of the underlying net-
work remains largely unchanged so far. By this mechanism,
the following properties can be established given a suffi-
ciently large portion of mining nodes performing compu-
tational work which continuously verifies and proves past
executions according to the protocol:

• Integrity: each block carries a hash value of the previous
block, ensuring the integrity of all prior blocks.

• Immutability: the data structure is replicated throughout
the peers of the work where integrity checking does not
allow for changes of past blocks.

• Traceability: each transaction performed is recorded in a
specific block, usually with a numeric identifier. A time
stamp as part of the block’s data specifies an approximate
creation date and time for transactions.

• Identification: signatures bind the identity of users to
blockchain addresses acting as source and destination of
transactions. This property refers also to non-repudiation,
i.e. the binding of a transaction to its source and destina-
tion is definitive.

• Autonomous execution: program code can be run as a
smart contract using an instruction set specified by the
protocol. In this way, the execution possesses the verifi-
ability properties of the protocol.

• Incentivized Operation: rewards are issued to the peers
performing the proof-of-work computations.

In such a system, the notion of trust therefore refers a sin-
gle point of truth being established such that data and oper-
ations can be traced back to individual peers through digital
signatures. In this context, blockchains are sometimes con-
sidered to establish trust without intermediaries.

Applications utilize the properties for example in the at-
testation of identities, knowledge, information or data (Härer
and Fill, 2019), e.g. by certifications verifiable with an un-
trusted third party on the blockchain. Similarly, algorithms
can be registered for providing transparency, in order to es-
tablish their integrity at a later point in time by another party.
First concepts involving algorithms for the benefit of trust
have been suggested for explainable artificial intelligence
(XAI) at this point (Calvaresi et al., 2019; Nassar et al.,
2020).

Regarding implementation, the discussion in this paper
assumes a blockchain capable of smart contracts, such as
Ethereum (Buterin, 2013; Wood, 2014). Here, smart con-
tracts are byte code programs, stored and executed in au-
tonomously operated contract accounts (CA), in contrast to
externally owned accounts (EOA) defined by the public-
private key pairs of users. Towards establishing trust, this
platform constitutes a base layer for the identification, trace-
ability and attestation of data and higher-level concepts.
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Framework
Based on the aforementioned foundations we can now ad-
vance to describing our framework for supporting trust in
hybrid intelligence systems through blockchains. The cen-
tral idea thereby is to enable the traceability and thus the
provenance of all components of hybrid intelligence sys-
tems. Thus, it needs to be recorded, which human agents,
machine agents, data, and symbolic representations exist and
how they interact for generating results. This can be done
both at design time, i.e. when new hybrid intelligence sys-
tems are conceived, as well as at run time when concrete
executions are observed. Thus it can be investigated, how
results have been generated by HI systems and who can be
held accountable for them.

For structuring the framework we reverted to the boxol-
ogy elements proposed by Harmelen and Teije for combin-
ing machine learning and knowledge reasoning (Harmelen
and Teije, 2019), i.e. we include components for knowledge
reasoning (KR), machine learning (ML), model-free repre-
sentations (Data) and symbolic representations (Sym). We
extend it by adding human agents (HA) to allow for the con-
struction of human-in-the-loop systems. All components can
be related to each other through a relation element as shown
in Figure 3. The recording on a blockchain then takes place
in the form of attestations, which can either be triggered
through human agents or machine agents.

In the following sections, the components and relation-
ships of the framework are discussed. Subsequently, we will
specify smart contracts for conducting the mentioned attes-
tations and discuss possible realization options.

Components and Relations
The following sections argue for designing knowledge rea-
soning and machine learning systems with the explicit in-
volvement of human agents for utilizing complementary
strengths and as a source of trust and accountability. For this
reason, the pattern-based specification of such a system is
detailed here by its components and relations. They com-
prise Human Agents (HA), Knowledge Reasoning (KR) and
Machine Learning (ML) components as well as representa-
tional Data and Symbolic (Sym) components and their re-
lations. The notation for processing components and repre-
sentational components can be seen in Figure 3.

In order for HA to be the source of trust and accountabil-
ity of a specific pattern, its components are subject to attes-
tation on a blockchain where they are linked to the identities
of human agents. Subsequently, algorithms and the execu-
tion with concrete representations are subject to attestation
triggered by humans or machines.

Initialization through Human Agents In contrast to
views where machines are held accountable for their actions,
this approach assumes the source of trust to be a human
agent. Acting as a designer for a specific pattern and its al-
gorithms, a human agent is able to provide explainability of
the design, human comprehension, emotional understanding
in decisions concerning moral and ethics as well as account-
ability. For the identity to be linked to the design, it needs
to fulfil three requirements. (1) The identity must be unique,

(2) the existence of the identity must be publicly verifiable,
and (3) it must be linked to a human identity for account-
ability and for others to trust it.

However, the role and benefit of human involvement
through comprehension, emotional understanding and other
factors is not to be reduced to accountability, as it might be
considered the least desired factor when algorithms are exe-
cuted autonomously with little control of human agents.

One possibility is the registration of self-managed identi-
ties on a blockchain, proposed in the form of self-sovereign
identity concepts (Lundkvist et al., 2016). At a minimum, (1)
and (2) can be realized by public-private key pairs belong-
ing to externally owned accounts on a blockchain such as
Ethereum, which can be extended with additional personal
attributes if required. The link to a human identity (3) has
to be proven outside of the blockchain system, e.g. through
digital signatures from government-issued electronic iden-
tity such as eID in Europe (Shehu, Pinto, and Correia, 2019).

For the purposes of discussing the framework, the fol-
lowing initialization through a human agent HA is assumed
prior to the design of a pattern with its implementing algo-
rithms and data:

• Generation of an externally owned account EOA =
(EOASec,EOAPub,EOAA) where EOASec is a private key
from which a public key EOAPub and a public account ad-
dress EOAA are derived. In principle, any form of a public
identifier ID might be provided.

• Creation of a signature S using an electronic ID certificate
identified by eIDPub such that a message M = EOAA is
signed and verifiable with S through the certificate author-
ity of the eID.

• Registration of S and M with a smart contract through a
blockchain transaction originating from EOAA, proving
that the identity knows EOASec.

• Future transactions for design time and run time attesta-
tions originating from an address EOAA′ are valid if a sig-
nature S′ is found for EOAA′ in the smart contract and if
S′ can be verified, proving the identity is eIDPub.

Following the design of a pattern, attestation transactions
triggered by human or machine agents are bound to HA. In-
dividual transactions for components and relations are car-
ried out according to the following sections.

Machine Agents The term machine agent here refers to
the processing of algorithms for knowledge reasoning and
machine learning. At design time, this concerns the trace-
ability of the components KR and ML with their implement-
ing algorithms over time.

In principle, two dimensions might be considered for
recording and attesting algorithms over time. (1) the ab-
straction level, ranging from securing the algorithm in its
source code representation as a whole to a fine-grained rep-
resentation of individual syntactic elements (Falleri et al.,
2014; Fluri et al., 2007), and (2) the differencing approach,
distinguishing a state-based or operation-based representa-
tion of changes (Koegel et al., 2009; Lippe and van Oos-
terom, 1992). State-based approaches permit showing the
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Figure 3: Framework for describing the components and relationships which utilize the blockchain in human-triggered or
machine-triggered attestations. The components are based on the design pattern proposed by (Harmelen and Teije, 2019) and
extended to human agents.

differences between individually recorded states of an al-
gorithm’s source code. Implementations of this approach in
version control systems such as Git1 require an intentional
commit for recording the current state. Given two states,
it is only possible to reconstruct their differences. In con-
trast, operations-based approaches permit the reconstruction
of change operations made between two states by recording
all operations or atomic state changes individually. Instead
of detecting deletions and insertions of source code, individ-
ual operational changes to syntax elements can be detected,
however, versioning needs to be aware of the syntax and lan-
guage used.

In order to allow changes to be publicly observed and
traced on a blockchain, existing versioning approaches can
be adapted for storing individual states or operations. Given
the source code of an algorithm, the following attestation is
assumed:

• Assignment of a unique identifier ID, optionally in the
form of a resource locator for providing public access
to the algorithm. For example, UUID version 4 (Leach,
Mealling, and Salz, 2005) might be used to locally as-
sign a randomly generated identifier, possibly as part of a
URL.

• Calculation of a set of hash values HA for each abstraction
of the algorithm’s source code, e.g. code blocks defining
a state or individual operations.

• Recording of the pattern component type c ∈ {KR,ML},
ID, HA, and the current block number in a smart contract
given that a valid signature of HA is provided.

• Changes to the chosen abstraction can be detected pub-
licly by a change of any of the values in HA compared to
the versions stored previously.

Data The representational components Data and Sym con-
cern the run time of algorithms according to a given pattern.

1https://git-scm.com/

Given the notion of model-free data without knowledge of
its internal composition, the requirement is for it to be trace-
able regarding its provenance and changes over time.

The storage of data on a blockchain has several limita-
tions. While it is theoretically possible to store the input and
output data of algorithms on a blockchain as a whole, the
data volume, veracity, and velocity (Laney, 2001) impose
requirements difficult to meet for distributed data manage-
ment systems and particularly blockchain systems. For ex-
ample, large machine learning data sets are not suited for to-
day’s blockchains due to the limited number of transactions
per second and block size (Kim, Kwon, and Cho, 2018).
While data availability therefore cannot be assumed, trace-
ability might be realized without it through the attestation of
data over time. On the basis of the attestation concept, trace-
ability can be achieved through the issuance of a permanent
identifier in combination with its binding to a human or ma-
chine agent. In addition, the identifier here is also assumed
to locate data through traditional client-server-based access.

The following scheme is assumed for the human- or
machine-triggered attestation of data:

• Assignment of a unique identifier ID similar to the attes-
tation of algorithms, e.g. using a UUID and, possibly, a
URL which contains it.

• Calculation of HData(B) as a cryptographic hash function,
e.g. (Dworkin, 2015), applied to binary data B.

• Recording of the representational component with ID,
HData(B), the component’s type Data, and the current
block number in a smart contract given that a valid sig-
nature of HA is provided.

• In future utilizations of B, its integrity is considered valid
if the re-computed value HData(B) is present in the smart
contract. In this case, an attestation is provided through
the smart contract and additional information can be re-
trieved from it. In particular, the date and time when the
data was recorded according to the block number, an iden-
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tifier and, possibly, locator, and the provenance according
to the signature of HA can be retrieved.

Sym The Sym component stands for symbolic knowledge
representations that are used as inputs and outputs of clas-
sical reasoning systems as defined in (Harmelen and Teije,
2019). This includes for example ontologies, rules, knowl-
edge graphs or linked data.

For the attestation of Sym, the applicability of the data at-
testation scheme outlined in the previous section is assumed.
However, by considering the internal structures, more fine-
grained attestations become possible. Depending on the con-
crete representation, e.g. a resource description framework
(RDF) graph, logical expressions, or an ontology, an attesta-
tion requires an appropriate abstraction level. One example
is the attestation of ontologies on the basis of Knowledge
Blockchains as outlined in (Fill, 2019; Fill and Härer, 2018).
Other knowledge representations such as RDF triplets can
be subject to attestation in a similar fashion. Given a method
HSym(K) for observing an abstraction of a knowledge rep-
resentation K over time, the following attestation scheme is
assumed:

• Assignment of a unique identifier ID similar to the attes-
tation of algorithms, e.g. using a UUID and, possibly, a
URL which contains it.

• Calculation of HSym(K) as a cryptographic hash function
applied to a knowledge representation K. Given the ex-
ample of ontologies, HSym(K) represents the root hash
value of a Merkle tree that is created from the data in an
ontology - see (Fill, 2019) for details.

• Recording of the representational component Sym, ID,
HSym(K) and the current block number in a smart con-
tract given that a valid signature of HA is provided.

• Similar to the attestation of Data, K is considered valid in
future utilizations if HSym(K) can be established, e.g. by
reconstruction of a Merkle tree resulting in this particular
value. However, K might be any fine-grained representa-
tion here, e.g. classes of a subclass relation of an ontol-
ogy. For each abstraction K, the date and time, the block
number, an identifier and, possibly, locator, and the prove-
nance according to the signature of HA can be retrieved.

Relations between Components The design of a pattern
is finalized by the specification of its relations between
the components established previously. After the aforemen-
tioned attestations of individual components, their pair-
wise specification on the basis of the assigned attestation
identifiers is required. Therefore, relations in the form of
(IDC1, IDC2) for component pairs C1 and C2 are recorded
on the blockchain for completing the design of a pattern.

In this process, the pairwise specification of components
is restricted by the components’ types and the combinations
permitted for them. Primarily, the constraints are imposed
by the notion of processing. Components of this type im-
ply an input or output to be present in the form of a repre-
sentational component. According to the patterns stemming
from the literature analysis by Harmelen and Teije (2019),
the knowledge reasoning (KR) and machine learning (ML)

components can be found in combination with Data or sym-
bolic (Sym) representations. Table 1 summarizes possible
relations between the components.

 

  Processing 

  Human  

Agent (HA) 

Knowledge 

Reasoning (KR) 

Machine 

Learning (ML) 

Repre-

sentation 

Data (1) (3) (5) 

Sym (2) (4) (6) 

 

 Table 1: Possible Relations between Representation and Pro-
cessing Components of the Framework

Knowledge reasoning systems are usually designed for
Sym representations as input and output (3). Additional sys-
tems were found (Harmelen and Teije, 2019) for relation (4)
in two instances, where raw data and symbolic input was
applied in combination for KR (Pattern 11) and in another
case where input data for ML was also used as input and
output of KR in order for KR to try to interpret and explain
the abstractions gained from machine learning (Pattern 8).

Machine learning systems mostly process model-free
Data representations as input and output (5). However, there
exist a variety of systems using relation (6) (Harmelen and
Teije, 2019). In particular, systems operating on symbolic
inputs may also produce symbolic output through learning
(Pattern 3 and 11) or an intermediate data output in case of
embeddings, which are an input for ML again in order to
produce Sym (Pattern 4). Other examples include the learn-
ing of ontologies (Sym) from Data inputs (Pattern 5), Sym
output for explanation of ML (Pattern 6 and 7), the produc-
tion of Sym output by ML to prepare learning or reasoning
(Patterns 9 and 10), learning with Data an additional Sym in-
put (Patterns 12 and 13), and for ML to learning knowledge
reasoning using Sym inputs and outputs (Pattern 15). As an
exceptional case, there also exist complex relations where
Sym is composed out of multiple components (Pattern 16).

For the design of patterns involving the learning and rea-
soning of human agents (HA), their relation to other HA,
KR, or ML components is indirectly made through explicit
knowledge, usually in the form of Sym representations, lead-
ing to relation (2). However, knowledge of an inherent struc-
ture cannot always be assumed, such that Data and Sym are
possible components in relation (1) to and from HA.

Realization Requirements for Smart Contracts
Based on the outlined process for the attestation of indi-
vidual components with their relations, the following smart
contract details the data required and operations necessary
to implement attestations in practice. Blockchain platforms
supporting the execution of smart contracts in a manner sim-
ilar to Ethereum or Hyperledger are suited for implement-
ing the abstract specification provided in the following para-
graphs.

Firstly, the data structures required are shown in part 1
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of the smart contract listing. Here, the smart contract estab-
lishes a typing system in the form of enumerations (line 1
ff.), abstract data types with according data structures (line
4 ff.) and global variables for mappings between the abstract
data types provided (line 31 ff.). The typing system distin-
guishes human agents (HA), machine agents (MA) of pro-
cessing type KR and ML and the representational types (R)
Data and Sym. Individual HA’s identity data in the according
data type requires the storage of a signature, an externally
owned account (EOA) as well as a block number indicat-
ing when attestations have been conducted. Similarly, MA
must record an address for traceability to HA with a block
number, in addition to the attestation hash value, the pro-
cessing type and a URL. Representations use the same struc-
ture which only differs in the representation type. Relations
are stored as tuples of components where each component is
identified by a UUID. In addition, the attestation block and
address with the component type are recorded to allow for
lookups of a UUID without type information. Global vari-
ables are defined for mapping data structures to relate each
UUID to one HA, MA, representational type or relation.

Smart Contract Part 1: Data Types and Mappings
1 Enum ComponentType { HA, MA, R }
2 Enum ProcessingType { KR, ML }
3 Enum RepresentationType { Data, Sym }
4 DataStruct HumanAgent {
5 Signature sig;
6 Address eoa;
7 Integer block;
8 }
9 DataStruct MachineAgent {

10 ProcessingType type;
11 ByteArray hashValue;
12 Address addr;
13 Integer block;
14 URL url;
15 }
16 DataStruct Representation {
17 RepresentationType type;
18 ByteArray hashValue;
19 Address addr;
20 Integer block;
21 URL url;
22 }
23 DataStruct Relation {
24 UUID uuidFrom;
25 UUID uuidTo;
26 ComponentType typeFrom;
27 ComponentType typeTo;
28 Address addr;
29 Integer block;
30 }
31 Map (UUID => HumanAgent) humanAgent;
32 Map (UUID =>MachineAgent) machineAgent;
33 Map (UUID => Representation) representation;
34 Map (UUID => Relation) relation;

The operations required to perform attestations are out-
lined in parts 2 - 5. In the registration of HA in part 2, a
signature needs to be provided by HA. A UUID is randomly
generated and the sender address is read from the transac-
tion (2) such that it can be the subject of a signature valida-
tion. I.e., the signature including a public key of HA and the
signed address of the sender must be valid. In this case, the
aforementioned data is recorded under the assigned UUID.

Smart Contract Part 2: HA Identity Registry
1 Function identityRegistry(sig: Signature) : void {
2 Address snd = Transaction.sender;
3 if signatureValidation(sig, snd) then
4 UUID uuid = generateRandomUUIDV4();
5 humanAgent[uuid].block = Block.nr;
6 humanAgent[uuid].eoa = snd;
7 humanAgent[uuid].sig = sig;
8 end
9 }

After the initialization by HA is conducted, the identity
data stored for it is retrieved and validated for every regis-
tration of algorithms, representations, and relations in parts 3
- 5. The validation occurs in the same fashion in these parts.
Considering, e.g. the registration of algorithms in part 5, line
5, the two requirements for registration can be seen. In par-
ticular, the transaction sender must match the HA referenced
by its UUID and the signature has to be valid according to
the properties mentioned in the previous paragraph. With
a randomly generated UUID for MA, the algorithms’ hash
value, processing type, URL and sender are stored. In the
same manner, the recording of representations of the types
Data and Sym can occur as in part 4.

Smart Contract Part 3: MA Algorithm Registry
1 Function algorithmRegistry(type: ProcessingType,

data: ByteArray, url: URL, uuidHA: UUID) : void {
2 Address snd = Transaction.sender;
3 Address eoa = humanAgent[uuidHA].eoa;
4 Signature sig = humanAgent[uuidHA].sig;
5 if snd == eoa && signatureValidation(sig, eoa)

then
6 UUID uuid = generateRandomUUIDV4();
7 machineAgent[uuid].block = Block.nr;
8 machineAgent[uuid].addr = snd;
9 machineAgent[uuid].type = type;

10 machineAgent[uuid].url = url;
11 machineAgent[uuid].hashValue =

hashFunction(data);
12 end
13 }

The registration of relations in part 5 takes the pair of
components by their UUID and types as parameters, to-
gether with the discussed identifier of HA. Another UUID
is generated in order to store the relation itself. The retrieval
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Smart Contract Part 4: Representation Registry
1 Function representationRegistry(type:

RepresentationType, data: ByteArray, url: URL,
uuidHA: UUID) : void {

2 Address snd = Transaction.sender;
3 Address eoa = humanAgent[uuidHA].eoa;
4 Signature sig = humanAgent[uuidHA].sig;
5 if snd == eoa && signatureValidation(sig, eoa)

then
6 UUID uuid = generateRandomUUIDV4();
7 representation[uuid].block = Block.nr;
8 representation[uuid].addr = snd;
9 representation[uuid].type = type;

10 representation[uuid].url = url;
11 representation[uuid].hashValue =

hashFunction(data);
12 end
13 }

of a relation by UUID therefore yields access to the compo-
nents provided by their typing information through the map-
ping data structures in part 1, line 31 ff..

Smart Contract Part 5: Relation Registry
1 Function relationRegistry(uuidFrom: UUID, uuidTo:

UUID, typeFrom: ComponentType, typeTo:
ComponentType, uuidHA: UUID) : void {

2 Address snd = Transaction.sender;
3 Address eoa = humanAgent[uuidHA].eoa;
4 Signature sig = humanAgent[uuidHA].sig;
5 if snd == eoa && signatureValidation(sig, eoa)

then
6 UUID uuid = generateRandomUUIDV4();
7 relation[uuid].block = Block.nr;
8 relation[uuid].addr = snd;
9 relation[uuid].uuidFrom = uuidFrom;

10 relation[uuid].uuidTo = uuidTo;
11 relation[uuid].typeFrom = typeFrom;
12 relation[uuid].typeTo = typeTo;
13 end
14 }

Newly registered identities, algorithms, representations,
and relations can be monitored over time by anyone with ac-
cess to the blockchain that contains the smart contract with
the global variables humanAgent, machineAgent, represen-
tation, and, relation (part 1, line 31 ff.). After a registration
and its UUID have been observed, an attestation can be car-
ried out by any third party through the per-UUID retrieval
of a global variable and the validation of its values. In the
case of an identity, the validation is determined by checking
the signature in humanAgent which must be a valid signed
message of the EOA address also stored in humanAgent.
For an algorithm or representation, the hash values stored in
machineAgent and representation are required to match re-

computed hash values of the abstractions used, e.g. syntax
elements for algorithms, binary data and symbolic represen-
tations such as ontology classes. Lastly, relations are sub-
ject to validation by checking whether the components con-
tained in relation exist. Each component is identified by a
UUID required to be stored in humanAgent, machineAgent,
or representation. Given a successful validation, the stored
block number and identity address can be considered valid
and might be retrieved additionally. A continuous monitor-
ing and attestation process is easily carried out, triggered by
receiving a new block from the network over the course of
synchronizing the blockchain as usual.

Requirements and Options for Execution
At run time, the execution of algorithms might be fully or
partially autonomous and require the ability of reviewing
execution traces in order to allow for according design time
changes.

Concerning traceability in the execution at run time, it is
limited by the distributed execution environment. In general,
there exist three approaches in this area. First, the execu-
tion might be blockchain-based if it occurs directly on the
infrastructure of a blockchain. Secondly, a trusted execu-
tion outside the blockchain might be software-based through
performing proofs. Thirdly, hardware-based executions in
trusted environments might be employed.

In the case of a blockchain-based execution, an untrusted
and global peer-to-peer network can be assumed, where the
blockchain infrastructure extends beyond the boundaries of
known internal networks. Therefore, the execution itself is
traceable only in the form of a smart contract, which is ver-
ifiably executed by the nodes of the network. While the ex-
ecution of (unsupervised) learning algorithms and the ap-
plication of learned models through smart contracts is ex-
plored (Harris and Waggoner, 2019), the feasibility of run-
ning knowledge reasoning and, in particular, machine learn-
ing algorithms directly on a blockchain cannot be assumed
for the general case due to the scalability limitations of
blockchains.

For trusted execution in general, approaches on the run
time level providing a verifiable execution of algorithms can
be divided into software- and hardware-based approaches.

Software-based approaches rely on proofs calculated dur-
ing the execution, such that either the execution instruc-
tions performed or the resulting data output can be veri-
fied. For example, zero-knowledge proofs have been used
in trusted execution schemes independent of (Ben-Sasson et
al., 2013) and specifically for blockchain-based execution
(Morais et al., 2019). In a distributed execution environment,
blockchain-based approaches are advantageous due to the
global state and global verifiability they provide. Scalability
limitations also impact verifiable execution for applications
such as machine learning here, even though, specialized ap-
proaches are beginning to appear (Ghodsi, Gu, and Garg,
2017).

Hardware-based approaches concern the area of trusted
computing in combination with blockchain infrastructures
(Hardjono and Smith, 2019; Luo et al., 2019). Trusted plat-
form modules and secure enclaves in processing units are
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Figure 4: Example of a Hybrid System (Ontology Learning) with attestation of pattern and its instances

widespread today. In these realizations, there exists a trusted
hardware element that provides a higher level of trust in the
data stored and executions performed due to isolation from
the main processing units and storage components. How-
ever, a variety of specialized execution instructions such as
Intel SGX2 and storage formats specific to individual plat-
forms such as the Android keystore system3 hamper stan-
dardization today.

Exemplary Use Cases
The construction of HI systems through the framework en-
compasses the specification of patterns, their attestation in
smart contracts and an execution according to the afore-
mentioned requirements. Use cases outlining the assumed
benefits of this approach relative to current KR and ML
systems are discussed in the following subsections. While
the framework imposes significant design-time and run-time
overhead, it might be applied in scenarios requiring trans-
parency, distribution and trust. In particular, systems involv-
ing human and machine agents, e.g. considering algorithmic
profiling, self-driving cars, or medical diagnoses. A pattern
employed by these instances, where human and machine ac-
tors depend on each other, might be composed as in Figure
4. In general, the registration of an HA identity is carried
out at first, followed by components and relations. The pat-
tern assumed here consists of learning of an intermediate
abstraction for reasoning, e.g. for creating and maintaining
an ontology classifying diseases with data input processed
through ML and oversight by human actors. Structurally,
the pattern is also partially similar to pattern (10) (Harme-
len and Teije, 2019), reminiscent of Alpha Go. However, it
is extended here as an example for a learning and reason-
ing system with feedback and learning from a human agent.
Similarly to pattern (10), Data is an input for an ML step to
produce an intermediate Sym input for KR. However, we do

2https://software.intel.com/en-us/sgx
3https://developer.android.com/training/articles/keystore

not assume direct input to KR here. Instead, the Sym input
first is subject to HA for quality control by help of an addi-
tional Sym input, e.g. from a domain ontology. With this ad-
ditional knowledge, HA may choose to verify and augment
the ML Sym output for reasoning through KR. Furthermore,
results of the reasoning are used to enrich future Sym in-
put for aiding HA. Similar to pattern (10), symbolic struc-
tures are constructed ultimately, however, with HA and KR
as two intermediate abstractions. Assuming the attestation
of this exemplary pattern, the following applications related
to transparency, distribution and trust become apparent.

Example 1: Traceability Traceability pertains to the hu-
man agent involved as well as the components of the pattern
at design time and run time.

Regarding the human agent, an identity is established
through the externally owned blockchain account belonging
to it. Using signatures, this account may be bound to another
identity system such as officially issued eID cards.

The components and relations designed by the human
agent are created on the basis of its identity. Initially, the HA
identity is registered as an anchor for further attestations of
Data, the ML and KR algorithms, the Sym representations
following and all relations. In scenarios where accountabil-
ity is required, e.g. for scenarios critical to security and hu-
man safety, the attestation of the design becomes relevant at
run time. Even though ML and KR might be performed by
machine agents in full or partial autonomy, their algorithms
with input and output data are bound to their initial designer
HA.

Example 2: Crowd Sourcing of Learning and Reason-
ing Due to their origin, most blockchains natively support
the transfer of virtual currency. An externally owned account
bound to an identity has a balance denominated in a currency
such as Ether. Similarly, contract accounts in blockchains
such as Ethereum hold a balance for making monetary trans-
action triggered by a smart contract.
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Once deployed, a smart contract can autonomously ex-
ecute transactions compensating for machine learning and
knowledge reasoning tasks performed by human agents or
machine agents. In principle, the fully autonomous and
reward-based creation of symbolic data and algorithms, e.g.
ontologies and query logic, is possible with known identi-
ties. Depending on the incentive structure and game theo-
retical outcomes, the explicit involvement of human agents
for quality control might be desirable considering a pattern
such as Figure 4. For example, today, the collaborative cre-
ation of ontologies such as for the ICD uses KR manually
through the Protégé software (Horridge et al., 2019). Here,
according interfaces can be added for the collaborative cre-
ation of ontologies by multiple distributed parties with KR
or ML capabilities.

Example 3: Trust With the identity system outlined, a
reputation-based trust model as well as policy-based one can
be implemented. Reputation-based trust is commonly em-
ployed on the internet today. The concept of a rating system
for the determination of trust applies also to smart contracts,
assuming a sufficient number of users. On the other hand,
a policy-based trust can establish definitive rules for known
identities when ML and KR tasks are executed by machine
agents. With increasing autonomy, this aspect becomes rel-
evant, for example, in applications critical to the safety of
human users, e.g. considering the algorithms developed for
self-driving cars. In this instance of policy-based trust, algo-
rithms developed in the engineering phase and updates ap-
plied at a later point in time can be traced back to the initial
development. In principle, the validity of data in any system
can only be established to the extent of the real-world behav-
ior observable and verifiable. Therefore, the transparent and
tamper-proof record enables observation and validation to
an extent, as it might be performed internally, by regulators,
competitors, or the general public.

Conclusion and Outlook
The emergence of hybrid intelligence systems as combina-
tions of knowledge reasoning and machine learning with
human-in-the-loop, symbolic, and data representations of-
fer great potentials. Towards the creation of trust in such
systems, blockchains can aid in tracing the provenance of
all involved components and their relations to their origi-
nators in the form of human agents. However, this ensures
trust only on a technical level and in terms of accountability
through attestation. The integration of further trust aspects
such as ethical and moral responsibility is thereby implicitly
covered to the extent of the involvement of humans. It will
need to be further investigated how such aspects can be ex-
plicitly ensured, e.g. through verifying components that are
to be attested. Further work will be required for analyzing
potentially huge sets of pattern combinations and for deriv-
ing further meta-insights into their optimal usage.
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